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Approximate wall boundary conditions in the 
large-eddy simulation of high Reynolds number flow 

Executive Summary: The near-wall regions of high Reynolds numbers turbulent flows 
must be modelled to treat many practical engineering and aeronautical applications. In 
this project we carried out and analyzed results from simulations of both attached and 
separated flows on coarse grids in which the near-wall regions were not resolved and were 
instead represented by approximate wall boundary conditions. The simulations use the dy- 
namic Smagorinsky subgrid-scale model and a second-order finite-difference method. Typ- 
ical results are found to be mixed, with acceptable results found in many cases in the core 
of the flow far from the walls, provided there is adequate numerical resolution, but with 
poorer results generally found near the wall. Deficiencies in this approach are caused in 
part by both inaccuracies in subgrid-scale modelling and numerical errors in the low-order 
finite-difference method on coarse near-wall grids, which should be taken into account when 
constructing models and performing large-eddy simulation on coarse grids. A promising 
new method for developing wall models from optimal control theory was developed which 
is being pursued under a new AFOSR contract. 

Abbreviations: DNS - direct numerical simulation; LES - large-eddy simulation; RANS 
- Reynolds-averaged Navier-Stokes; SGS - subgrid-scale; TBLE - thin boundary layer 
equations 

Nomenclature: A+ - damping function parameter; B - log law intercept; C - dynamic 
coefficient for the Smagorinsky model; C/ - friction coefficient, 2^/11^; Cp - relative wall 
pressure coefficient, 2{PW - P0)/U^; h - step height; k - turbulent kinetic energy; L - 
inertial length scale, k/e; C - residual SGS stress between test and grid filter levels; M 
- residual SGS model strain between test and grid filter levels; P - mean pressure; Pm - 
matching pressure at ym; Reh - step Reynolds number, U^h/v; ReT - friction Reynolds 
number, uT5/u; S - strain rate tensor; T - residual SGS stress at test filter level; U - mean 
streamwise velocity; v! - streamwise rms velocity fluctuation intensity; üj - velocity in the 
inner layer; Uoo - free stream velocity; Um - streamwise matching velocity at ym; Umi - 
matching velocity at ym in the ith direction; uT - friction speed; x - streamwise coordinate; 
y - wall-normal coordinate; y+ - wall-normal coordinate in wall units, yurjv\ ym - log law 
intercept; Ö - channel half-width or boundary layer thickness; A - effective filter width; e - 
turbulent dissipation rate; K - von Kärmän constant, inverse slope of log law; v - kinematic 
coefficient of molecular viscosity; vs - SGS eddy viscosity; ut - eddy viscosity in the inner 
layer; r - residual SGS stress at grid filter level; TW - streamwise wall stress; rwi - wall 
stress in the ith direction 



1    Introduction 

The near-wall region in high Reynolds number turbulent flow contains small vortical structures 

(streaks) that are dynamically important to the flow, but which have dimensions that scale with the 

viscous scale, making it impractical to resolve them in numerical simulations at very high Reynolds 

numbers. Thus there is a crucial need to approximate the overall dynamical effects of the streaks on 

the larger outer scales through appropriate boundary conditions without resolving the inner viscous 

regions. On the other hand, the need for approximate wall boundary conditions has not been so 

well established in separated flow regions, which do not exhibit this streak-like structure, and which 

behave effectively like low Reynolds numbers flows with lower resolution requirements. 

In 1970 Deardorff [17], constrained by the limited computing power of his time, performed a 

large-eddy simulation (LES) of channel flow with no molecular viscosity on a very coarse grid. He 

used approximate boundary conditions, matching the second wall-normal derivatives to the log law 

values, and an eddy viscosity subgrid-scale (SGS) model, with which he obtained fairly poor mean 

flow statistics. The same near-wall resolution problem presents itself to us today, even though we 

have vastly greater computing power than in 1970, as we attempt to simulate more complex, high 

Reynolds number flows. 

1.1    LES resolution issues 

Current subgrid-scale models, which generally do a good job predicting unresolved turbulent dissi- 

pation, do not model unresolved stresses accurately when they are a significant fraction of the total 

Reynolds stress [28]. As a consequence, a proper LES must resolve all "large" turbulent scales in 

the flow, viz., those that contain most of the turbulent kinetic energy and Reynolds shear stress in 

a localized region of the flow. Another way to put this is that the grid spacing A should be some 

minimal ratio of the local inertial length scale, L = k3/2/e, where k is the turbulent kinetic energy 

and e is the turbulent dissipation rate; this ratio has been estimated to be A/L « 1/10 to obtain 

good results in channel flow [4]. Near walls in boundary layers the size of turbulent eddies scales 

roughly as the distance from the wall, limited by viscous scales, which means that well resolved LES 

requires grids nearly as fine as those used in direct numerical simulation (DNS). This restriction 

applies not only to wall-normal grid spacing but to horizontal grid spacing as well. Baggett et al. 

[4] estimated that the number of grid points necessary to resolve a channel flow properly with LES 

scales approximately as Re2
T. In well resolved LES of wall-bounded flow, most of the grid points 

are thus used in the near-wall regions. An example of this is a simulation with zonal refinement 

near the walls at a modest friction Reynolds number ReT = 1000 [27], in which 70% of grid points 

were allocated in near-wall zones comprising only 10% of the channel width. The time step in the 

simulations must also be decreased accordingly with these finer grids for numerical stability. 

We note that, in practice, many LES applications use fairly coarse horizontal grids —too coarse 

in fact to resolve the energy-containing scales accurately—, but refine the grid in the wall-normal 

direction to nearly DNS accuracy to "resolve" the buffer and viscous regions; we will refer to such 



in both the wall-normal and horizontal directions to capture the energy-bearing scales of motion or 

even the variation of the mean flow in the wall-normal direction. With a zonal or unstructured mesh, 

one could provide a mesh for the outer flow that does capture the energy-containing scales down 

to a certain distance from the wall that is physically reasonable (say, within some small fraction 

of the boundary layer thickness) and affordable for the given computational resources. Boundary 

conditions on all velocity components are then specified at the location off of the wall where the grid 

ends. 

Attempts at using such "off-wall" boundary conditions synthesized from rescaled interior flow 

data [7, 36, 29] have proven to be largely unsuccessful. Baggett [5] performed tests using exact near- 

wall flow data in a channel, obtained from a wall-resolved LES, as an off-wall boundary condition; 

by scrambling the phases of the data, he found that the interior flow was severely disrupted near the 

artificial boundary unless the relative phases and the time scales of the original flow were preserved 

in the boundary plane, indicating that a good deal of physical structural information is required 

for off-wall boundary conditions to avoid generating spurious transition regions. Jimenez & Vasco 

[29] found that the interior flow is very sensitive to the boundary-normal transpiration velocity; if 

it is incompatible in the sense of continuity from the interior flow, then large pressure and velocity 

fluctuations are generated. The off-wall boundary may also be generally incompatible in the sense 

of injecting an unphysical rate of energy into the interior flow; this may also be a problem in wall 

stress models. Any workable off-wall model will need to satisfy rather severe constraints like this, 

which makes them very difficult to construct successfully. 

The usual result of applying poorly designed off-wall boundary conditions is the appearance of a 

strong, spurious boundary layer above the artificial boundary. The rest of the outer flow may also be 

affected adversely in addition because of the spurious pressure generated at the artificial boundary, 

which is felt everywhere in incompressible flow. Because of these problems, we will restrict our 

further discussion to the performance of wall stress models. 

1.4    Numerical scheme 

Throughout this paper we will discuss results using second-order central finite differencing on a 

staggered grid [23, 25] and a third-order Runge-Kutta time advancement scheme, whose numerical 

properties have been examined in some detail [15, 32, 20, 26]. Numerical dispersion errors are 

known to be high for second-order differencing, which effectively reduces the spatial resolution to 

about 1/3 that of spectral methods for same number of grid points in each direction [32], and in 

which numerical errors are probably comparable to the contributions from the SGS model [20]. 

However, low-order codes like these have good conservation properties, are relatively flexible for 

implementation in complex geometries, and are hence widely used in engineering flow applications. 

It is therefore of practical interest to examine their performance using LES on coarse grids with 

wall models. We will also only consider simulations using the standard dynamic SGS model [19, 31]. 

These choices, as will be seen further on, have important consequences on the wall model results. 



K « 0.4 is von Kärmän's constant, and B « 5 is the log law intercept; or a more complicated 

composite formula for uT including the viscous and "wake" regions [16] can solved in flows featuring 

low Reynolds number regions (e.g., near separation). For rough walls, the value of the matching 

height ym is usually offset by an effective roughness thickness [33]. These equations are generally 

transcendental in ur, but can be solved quite efficiently with a few Newton iterations. Sometimes 

equation (1) is applied only to the mean streamwise component of velocity in simple flows [42, 22], 

or an effort is made to calculate the wall stress in alignment with the full horizontal velocity [33, 11]. 

Because flow conditions at a height ym affect the wall some distance downstream, one can shift Um 

and TW either manually by an empirical amount [40] or by time averaging the matching velocity 

from the outer flow over roughly the diffusion time of the inner layer. This shift is seen to increase 

the correlation of Um and TW in a priori tests of resolved flow simulations from about 30 to 50%, 

and slight improvements in the mean flow results have been reported [40]. Note that the level of 

averaging used in specifying Um affects the calibration of log law constants in equation (1) [33]. 

Werner k Wengle [47] fit the instantaneous horizontal velocities to a profile comprising a power 

law (rather than a log law) matched to a linear near-wall segment to obtain wall stresses, which 

does not give significantly different wall stress predictions from the previously cited models; for the 

subgrid-scale eddy viscosity they also switched from a Smagorinsky model to a mixing length model 

near walls. 
In geometrically simple flows like channel, horizontally averaged Um can be used to set a mean 

TW, with fluctuations set equal to the near-wall velocity fluctuations [42, 22]. Wu & Squires [48] 

generalized this approach to complex boundaries by obtaining a steady RANS solution for the near- 

wall region to determine the mean wall stress and using instantaneous outer flow information to set 

the local fluctuations in the wall stress. 

2.2    Wall stresses using thin boundary layer equations 

The unsteady thin boundary layer equations (TBLE), which in general are a simplified set of partial 

differential equations derived from the Navier-Stokes equations, can also be used, especially in flows 

with large pressure gradients which require more detailed momentum balance information [8]. The 

governing equations for inner horizontal velocity components v.i (i = 1,3) are 

düj     djüjüj)  |  dPm =  d 
dt dxj dxi       dy 

(2) 

with continuity 

«2 — Dr*1- <3) 
JO    OXi 

and with matching interior boundary condition Ui(ym) = Umi and wall boundary condition uj(0) = 0. 

In equation (2), Pm is the near-wall pressure from the outer flow, assumed to be independent of y 

in the inner layer. The eddy viscosity vt is usually modelled with an ad hoc damped mixing length 

prescription that approximates the linear and logarithmic regions for attached flow with reasonable 



surprisingly good success under the circumstances (see Section 3.2). The cost of computing the 

LES of the outer flow, of course, decreases dramatically using wall stress models, since much coarser 

grids can be used near walls and, for explicit numerical schemes, larger time steps can be used. The 

precise savings one gains in computational cost depends very much on the complexity of the flow 

and the complexity of the wall model employed. 

2.3    Subgrid-scale modelling 

In the simulations we will be considering, the standard dynamic procedure is applied to the Smagorin- 

sky [43] SGS model for the trace-free (*) part of the residual stress r [19, 31]: 

T* = (ÜÜ - GG)* ~ -2i/sS = -2CA2|S|S , (7) 

where (") denotes the filter, v. is the SGS eddy viscosity, C is the Smagorinsky coefficient, A is the 

effective grid width, and S is the resolved strain tensor. At a coarser scale given by an additional 

test filter (~), the residual stress is 

V = (GG - GG)* ~ -2v3% = -2CA2|I|I. (8) 

Test filtering equation (7) and combining with (8), assuming that C is not affected by the filtering 

operation, gives an algebraic expression for C in terms of test-filtered flow quantities, which is solved 

in a least-squares sense over tensor components and a spatial average (): 

C ~ (£ : M)/(M :M), (9) 

where .  ^ ^ 
£=(GG-GG)*,    A4 = 2(A2|S|S-A2|S|S). (10) 

A more mathematically rigorous formulation of the dynamic procedure, including effects of backscat- 

ter, is provided by Ghosal & Moin [21]. 
In plane-parallel flows, filtering and averaging are performed only on horizontal planes parallel 

to the walls. When the simulation uses a refined wall-normal grid, this may be justified, since the 

filtering over very small wall-normal distances has little effect. This approach is not at all justified 

when the mesh is so coarse in the wall-normal directions that large flow variations are being averaged 

over. The general class of commutative filters developed by Vasilyev et al. [45], which is normally 

applicable to all directions in wall bounded flows, is not appropriate here for the same reason. Also 

the terms used to compute C in the dynamic procedure, especially strain terms involving wall-normal 

derivatives, cannot be determined accurately on a coarse grid near walls. We therefore recognize 

from the outset that the SGS model may be highly inaccurate in the near-wall region, and that 

improvements are clearly needed in SGS/wall modelling in this area. 

When filters are much wider than energy-containing scales, as is the case on coarse near-wall 

meshes, one expects that the effect of large-scale spatial averaging over many turbulent eddies might 

correspond to a Reynolds average.   In that case, one would be justified in switching from SGS 
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Figure 1: Mean streamwise velocity in wall units for LES with TBLE wall stress models on a 323 

mesh at ReT = 4000 (circles) and 20000 (squares) with (open symbols) and without (solid symbols) 

enhanced SGS eddy viscosity near the walls. The log law (Eq. 1) using K = 0.41 and B = 5.1 is also 

shown (dotted line). 

Figure 2: Resolved velocity fluctuation intensities for LES with TBLE wall stress models on a 323 

mesh at ReT = 4000 with (open symbols) and without (solid symbols) enhanced SGS eddy viscosity 

near the walls. For comparison the (unfiltered) well resolved LES data of [27] at ReT = 4000 is 

shown with dashed lines. 



solutions without additional time averaging.) This fix is partially justified by the consideration that 

the near-wall computational cells still lie well in log layer and Reynolds stresses should not be affected 

strongly by the presence of the wall. The improvement in the mean velocity results indicate that the 

under-resolved flow and inaccuracies in standard SGS models in the vicinity of walls contribute to 

poor predictions of dissipation and Reynolds stresses there. We note that the mixed dynamic SGS 

model [50], which includes a self-similar stress term, üü-üü, in the model for the residual stress 

(Eq. 7), performs worse at these coarse resolutions, because it tends to give larger residual stresses 

and lower eddy viscosity (dissipation), which acts entirely in the wrong direction. There is no real 

overall improvement in the rms velocities by enhancing the near-wall SGS eddy viscosity (Fig. 2); 

the shift outward in the peak of u' may indicate that the near-wall flow is just acting like a lower 

Reynolds number flow [6]. 

Another problem appears to be the development of unphysical structures near the wall. Baggett 

[6] showed that streak-like structures develop near the walls with maximum spanwise spacing of 

about 6 times the grid spacing or the physical scale, which is about 100 wall units. In moderately 

high Reynolds number LES the grid spacing is several hundred of wall units or greater, but the robust 

streak formation process causes streaks to develop with unphysically large dimensions, giving rise to 

unphysical velocity intensities and correlations. These structures occur in the previously presented 

simulations and may account in part for the inaccurate rms velocity fluctuations predicted near 

the walls. In this context it is interesting to note that Mason and Thomson [34] added stochastic 

fluctuations to the SGS model, which improved the mean velocity profiles near the walls. It is 

possible that the improvement occurs because the stochastic fluctuations disrupt the development 

of these pseudo-streaks, although this needs to be verified with more careful studies. 

A notable feature about the mean streamwise velocity profiles using wall models is that they 

exhibit virtually no wake-like structure in the core compared with experimental data and results 

from better resolved simulations. This behaviour occurs for both 323 and 643 resolutions [14] and 

appears to be insensitive to the type of wall stress model and near-wall enhancement of the SGS eddy 

viscosity, even with quite vigorous wall stress fluctuations [37, 38]. A physical analogy to changing 

the wall conditions is the difference between smooth and rough walls. Perry et al.'s [39, 1] data 

show a slight drop in the wake parameter for rough walls, but nothing nearly as dramatic as seen 

in the coarse LES results. The lack of a wake appears instead to be due to insufficient resolution 

of the core flow with low-order numerical schemes. A healthy wake was recovered at ReT = 2000 

with the same numerical scheme with resolved walls [32] only when the grid spacing was about 5 

times finer in. the streamwise and 10 times finer in the spanwise directions than on the coarse 323 

grid used here. This demonstrates the degree to which the second-order numerical scheme degrades 

the resolution of the simulation. 

3.2    Separated Flow 

Arnal k Friedrich [3] performed LES of flow over a step on a coarse grid using the dynamic SGS 

model and a law-of-the-wall wall stress model [42] on all of the solid boundaries.   They found 

11 



0.5- 

vonKimnan 

a0'3" 
D. 
O. h                  A.          "dynamic' 
50.2- 

0.1- 

0- i—, r-^ , | 1 , 1 . 1—.—.—.—.—|—■      ■      ■      - 
10 
x/h 

15 20 

Figure 5: Instantaneous span-averaged dynamic K in equation (2) used in the TBLE model versus 

its standard value of the von Kar man constant. 
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Figure 6: Friction coefficient on the bottom wall behind a step for the wall-resolved LES [2], wall 

stress models using stress balance and TBLE with a dynamic kappa in equation (5), and a global 

RANS v2f model [18]. 

this correction it is found that the wall stress dips about 10% lower in the main recirculation region. 

As seen in Figure 6 for the friction coefficient Cf along the bottom wall, the case using the stress 

balance model produces a prediction of Cf in the reverse flow that is too low by almost a factor of 

2 compared with the wall-resolved calculation, and the recovery past reattachment is also seen to 

be too slow. When the wall stress is predicted by the thin boundary layer equations, Cf is slightly 

too high in the reverse flow region, but the shape of the recovery region is predicted better. The 

effect of Cf being slightly too high in the attached exit region may be related the problem seen in 

channel flow of too low a slope in the mean streamwise velocity profile near the wall, which for a 

fixed free stream value causes the near-wall flow to be too rapid and gives too high a value of skin 

friction. In both wall stress model cases, the reattachment position is in fairly good agreement with 

the wall-resolved LES results, as are the mean streamwise velocity profiles shown in Figure 7. On 

the other hand, neither of the cases captured any secondary recirculation in the corner under the 

step, which may not have been possible anyway on such a coarse grid. The v2f RANS model [18], 
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Figure 8: Pressure coefficient on the bottom wall behind a step for the wall-resolved LES [2], and 

stress-balance and TBLE wall stress models. 

stress predictions, more appropriate models should be used, e.g., based on wall jet scaling relations 

(cf. [30]). 
Simple stress balance models, with and without the pressure gradient, have also been applied to 

trailing edge flow over a hydrofoil, which features a mild separation, with fairly good results [46]. 

The separation point is well predicted compared with a wall-resolved LES and experimental data, 

although there are some discrepancies in the mean velocity profiles in the separated region. Adding 

the pressure gradient term to the stress balance was found to improve the skin friction results in the 

adverse pressure gradient region; but, as in the case of the flow behind the step, a more accurate 

allowance for balancing advection terms in this region is needed for further improvements. 

In flow simulations of this type, the issue of providing consistent inflow conditions also arises. To 

avoid large transients in the inlet region, which can adversely affect results downstream and make 

it difficult to compare with other simulation or experimental data with any consistency, the inflow 

conditions should be as compatible as possible with the LES simulation, preferably computed with 

the same resolution, numerical scheme, and SGS and wall models. The problem also remains that 

the near-wall momentum predicted on coarse LES grids tends to be too high relative to the free 

stream, which could act to delay separation. 

3.3    Model development strategies using optimal control techniques 

Because there are many modelling inaccuracies near the coarsely resolved wall in addition to errors 

from the numerical scheme, it is not surprising that the flow develops a spurious transition zone, even 

if the exact wall stresses were used. Nicoud et al. [37, 38] posed the question: What wall stresses 

would actually be required in channel flow to obtain a good mean velocity profile? A suboptimal 

control strategy [10] was used to determine the wall stresses that would match a predefined log law 

in channel flow with ReT = 4000 and 20000 on a very coarse grid (323 computational cells with a 

second-order finite difference scheme). The scheme was suboptimal in that it enforced the log law at 

each time step rather than in the mean. 
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Section 3.2. Some outer flow features, like the wake profiles in channels, require more resolution to 

be predicted accurately. In general there must be sufficient resolution to capture scales containing 

most of the energy, Reynolds shear stresses, and energy transfer. Such resolution requirements are 

exacerbated in low-order numerical schemes because the high wavenumbers are contaminated by 

dispersion errors. 
There are some perhaps unavoidable discrepancies in the mean flow predictions in the first few 

off-wall grid points, where current subgrid-scale models are inadequate and numerical errors are 

large. Despite the success of wall models based on the law of the wall to predict wall stresses in 

some separated flow cases, improvements are still needed in the modelling of wall stresses in flows 

experiencing separation, reattachment, and recovery, since standard RANS models based on a law 

of the wall eddy viscosity are clearly invalid there. A simple "engineering" solution for general flow 

conditions may be to use several different scaling laws for different flow regimes, which are patched 

together and activated through some detection mechanism of outer flow conditions. Another solution 

is to apply much more sophisticated RANS models to determine the wall stresses. 

One of the most glaring problems that arises is the inability to predict the near-wall subgrid- 

scale stresses in the outer flow reliably using standard models, including the dynamic procedure. 

The reasons for this are: standard SGS models are designed for isotropic flows in which the large, 

energy-containing scales are resolved adequately, and the physically unrealistic flow that develops 

on the coarse near-wall mesh cannot be used as a basis for constructing any model quantities, 

even dynamic coefficients, accurately. Even if accurate model stresses were supplied in the near- 

wall region, numerical errors from the second-order finite-differencing method degrade the effective 

resolution to a point where the accuracy of the first few off-wall points is degraded. Solutions for 

mean flow quantities throughout the near-wall region — not only wall stresses — will need to be 

computed from trustworthy RANS solutions matched to the core flow beyond this contaminated 

region. In simple flows like the channel, these quantities can be determined a posteriori. For flows 

with developing boundary layers or separated flow, or in other cases where the flow depends more 

critically on the near-wall behaviour, an iterative strategy may be required in which a RANS model, 

matched to long-time averages of the outer flow, is computed occasionally to correct the mean wall 

stresses. 

Wall modelling studies are still needed using simulations with high fidelity numerical methods 

(e.g., spectral-spline [27]) to separate issues of numerical resolution and errors from actual wall model 

performance. There is also ample high Reynolds number data from turbulent pipe flow experiments 

for both smooth and rough walls [1, 39, 49], and it would be useful to test the performance of coarse 

LES in these flows using low-order finite-difference as well as higher fidelity numerical methods. We 

may also be able to gain some insight from the experimental data into the general effects of wall 

models by observing the effects of wall roughness. Ultimately, we want to incorporate wall roughness 

effects in an accurate way into the wall models. 

The overarching question of whether wall models in LES can be considered to be successful or 

not at this time is rather subjective, since what is deemed acceptable depends on the flow problem at 
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